
ORIGINAL PAPER

Expression of the nitrate transporter nrt2 gene
from the symbiotic basidiomycete Hebeloma cylindrosporum
is affected by host plant and carbon sources
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Abstract Although the function of the extramatrical myce-
lium of ectomycorrhizal fungi is considered essential for the
acquisition of nitrogen by forest trees, gene regulation in this
fungal compartment is poorly characterized. In this study, the
expression of the nitrate transporter gene nrt2 from the
ectomycorrhizal basidiomycete Hebeloma cylindrosporum
was shown to be regulated by plant host and carbon sources.
In the presence of a low fructose concentration, nrt2
expression could not be detected in the free-living mycelium
but was high in the extramatrical symbiotic mycelium
associated to the host plant Pinus pinaster. In the absence
of nitrogen or in the presence of nitrate, high sugar
concentrations in the medium were able to enhance nrt2
expression. Nevertheless, in the presence of high fructose
concentration, high ammonium concentration still complete-
ly repressed nrt2 expression indicating that the nitrogen
repression overrides sugar stimulation. This is the first report
revealing an effect of host plant and of carbon sources on the
expression of a fungal nitrate transporter-encoding gene.
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Introduction

Ectomycorrhizal fungi colonize the roots of the majority of
tree species of the boreal and temperate forests (Smith and
Read 1997) and constitute a large proportion of the
microbial biomass in many forest soils (Fogel 1980). It is
considered that ectomycorrhizas help trees to overcome
nutrient limitation of forest soils through the foraging
activity of the fungal extramatrical mycelium (Read and
Perez-Moreno 2003). The main consequence of this plant/
fungal association is the bidirectional exchange of fungus-
derived nutrients for plant-derived carbohydrates, enabling
the plant colonization of mineral nutrient-poor environ-
ments. Extramatrical mycelium from the ectomycorrhizal
fungi can proliferate extensively within soils (Högberg and
Högberg 2002) and efficiently prospects for nutrient
resources which may not be directly accessed by the host
plant. Although the function of this symbiotic mycelium
exploring the soil is important for nutrient acquisition by
forest trees, gene regulation in this fungal compartment is
poorly characterized (Morel et al. 2005; Wright et al. 2005).

It has been shown that the ectomycorrhizal agaric
Hebeloma cylindrosporum improves nitrate nutrition of its
natural host plant Pinus pinaster (Plassard et al. 2000,
2002). Nitrate uptake is a key step controlling the amount
of nitrate incorporated by the fungal cells and its subse-
quent reduction and finally nitrogen export to the plant cell.
The H. cylindrosporum nitrate assimilation pathway genes
including nitrate transporter (nrt2), nitrite (nir1), and nitrate
(nar1) reductases-encoding genes have been cloned and
their regulation studied in response to nitrogen sources
added to mycelia grown in pure culture (Jargeat et al. 2000,
2003) and in association with P. pinaster for the nir1 gene
(Bailly et al. 2007). Their transcriptions are repressed by

Mycorrhiza (2009) 19:143–148
DOI 10.1007/s00572-008-0221-2

D. Rékangalt :R. Pépin :M.-C. Verner : J.-C. Debaud :
R. Marmeisse : L. Fraissinet-Tachet
Université de Lyon,
69622 Lyon, France

D. Rékangalt :R. Pépin :M.-C. Verner : J.-C. Debaud :
R. Marmeisse : L. Fraissinet-Tachet (*)
CNRS, UMR5557, INRA, USC 1193, Ecologie Microbienne,
Bât. Lwoff, Université Lyon 1,
43 boulevard du 11 novembre 1918,
69622 Villeurbanne Cedex, France
e-mail: fraissin@univ-lyon1.fr



ammonium and, surprisingly, do not need nitrate for
induction as usually required in saprophytic and pathogenic
ascomycete species. In filamentous fungi, the genetics of
the nitrate assimilation pathway have been extensively
investigated particularly in the ascomycetes Emericella
nidulans and Neurospora crassa (for reviews, see e.g.,
Crawford and Arst 1993; Kinghorn and Unkles 1994;
Marzluf 1997). Genes involved in nitrate assimilation are
generally induced by nitrate and nitrite and repressed by
reduced nitrogen sources such as ammonium and glutamine.
In higher plants, it is well known that the nitrate assimilation
pathway is under multifactorial control by various signals
sensing the carbon and the nitrogen status of the cells. It is
related to the light–dark cycle, sugar, and nitrogen contents
(Forde 2000; Foyer et al. 2003; Cardenas-Navarro et al.
1998; Lejay et al. 1999, 2003). In Chlamydomonas
reinhardtii, three putative nitrate transporter genes of the
nrt2 family are regulated by both nitrogen and carbon supply
(Quesada et al. 1998). Although the effects of external
nitrogen source on nitrate transporter have been clearly
demonstrated in a number of organisms, including higher
plants (Forde 2000; Williams and Miller 2001), filamentous
fungi, and yeasts (Siverio 2002), the effects of external
carbon sources remain to be determined in fungi.

In this study, we compared the nrt2 gene expression
level in the extramatrical symbiotic mycelium associated
with P. pinaster roots. We also analyzed its expression
pattern in the mycelium of H. cylindrosporum grown, in

pure culture, on different carbon sources at different
concentrations in order to mime the sugar supplied to the
fungus by the plant and its potential effect on nrt2
expression pattern.

Materials and methods

Strains and growth conditions

The wild-type haploid h1 strain (mating type A1 B2) of H.
cylindrosporum (Debaud and Gay 1987), and two dikaryotic
strains: D2 (h1×h7) and the unrelated GCA6 one (Gryta et
al. 2000) were used for this study. Mycelia were grown on a
modified Melin–Nokrans medium (Gay et al. 1994) buffered
at pH 6.0 with 25 mM MES, solidified with 1.5% agarose
and overlaid with a cellophane membrane to allow plant
inoculation or mycelium recovery for RNA extraction. All
nitrogen sources were added after autoclaving the medium as
concentrated filter-sterilized stock solutions. Cultures were
carried out in the dark at 22°C. P. pinaster (Ait.) Sol. plants
were obtained from seeds (CEMAGREF batch) which were
surface-sterilized and germinated according to Debaud and
Gay (1987). Fungal inoculation was performed by covering
over its entire length the main root of a 2-week-old plant by
a 7×2-cm mycelium strip. Fifteen days after inoculation,
both the inoculated roots and the attached mycelium which
had grown out of the initial inoculum were harvested.
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BFig. 1 Colonization of Pinus
pinaster tap root inoculated
(b, c) or not (a) with mycelium
of the D2 strain of Hebeloma
cylindrosporum. Culture media
contained 13.9 mM fructose and
3.78 mM of either nitrate (a, b)
or ammonium (c). CC cortex
cells, R rhizodermal cells, E
endoderm, H external hyphae,
HN Hartig net. Bar=100 μm
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Effect of carbon supply on nrt2 gene expression

The effect of carbon supply on nrt2 gene expression in
mycelia associated or not to P. pinaster plants was analyzed
by growing the dikaryotic D2 mycelium for 15 days on a
buffered modified Melin–Norkrans medium containing
either a low (2.8 mM) or a high (13.9 mM) fructose
concentration without nitrogen (N=0) or supplemented
with either 3.78 mM NH4 (supplied as (NH4)2SO4) or
NO3 (as NaNO3). For inoculation, plants were placed in
140 mm diameter Petri dishes on sterile modified Melin–
Norkrans medium covered by a cellophane sheet. Mycelium
was harvested 15 days after inoculation.

Mycelium of the D2 strain was also grown for 10 days on a
buffered modified Melin–Nokrans medium supplemented
with 3.78 mM NaNO3 and containing a range from 1 to
15 mM final concentration of carbon source supplied as
either fructose, glucose (from 1 to 15 mM) or an equimolar
mixture of glucose+fructose (from 0.5 to 7.5 mM each).

Microscopy

Inoculated main roots were processed for microscopy according
to a method adapted from Pépin and Boumendil (1982). All
operations were performed at room temperature. Samples were
fixed for 4 h in 2% glutaraldehyde–0.5% paraformaldehyde in
a 0.1-M Mac Ilvaine (citrate-phosphate) buffer at pH 7. They
were subsequently washed for 3 h in 0.2 M Mac Ilvaine buffer
(pH 7) and then postfixed overnight in 0.5% OsO4 in 0.1 M
Mac Ilvaine buffer (pH 7). After dehydration in a graded series
of ethanol solutions and substitution in propylene oxide, the
samples were embedded in Epon resin. Polymerization of the
resin was carried out at 60°C for 3 days. Then, 0.7 μm semi-
thin sections were cut using a Leica Ultracut E ultramicrotome,
dried on glass slides, and finally stained with a methylene
blue–azure II mixture (Richardson et al. 1960). Microphoto-
graphs were taken using Kodak T-max film (100ISO).

Nucleic acid extraction and hybridization

H. cylindrosporum RNA was extracted using the Trizol
reagent (Invitrogen). For northern blot analysis, 20 μg of
total RNA was fractionated on 1% agarose gels containing
2.2 M formaldehyde. Hybridizations were carried out under
stringent conditions to allow hybridization only between
homologous sequences. Probes were made from gel
purified-DNA fragments and labeled with [α32P] dCTP
using the random labeling kit fromBoehringer. The nrt2 DNA
fragment was PCR-amplified with the TRN1U (5′-
GGTGCTACTTTCGCCATCAT-3′) and the TRN1L (5′-
AACGCCTTTCCAACTTCTGT-3′) primers localized in
the coding region of the nrt2 gene. The nar1 DNA fragment
was PCR-amplified with both NAR1U (5′-GCTCTAGAGC

CAAGCGCATCGTACCCC-3′) and NAR1L (5′-GAACG
AAGAAGAGGTTGCTG-3′) primers localized in the coding
region of the nar1 gene. The 5.8S rDNA gene used as a
control was obtained by PCR amplification of the ITS1-
5.8S-ITS2 region using both ITS1 (5′-TCCGTAGGTG
AACCTGCGG-3′) and ITS4 (5′-TCCTCCGCTTATTGAT
ATGC-3′) primers (White et al. 1990). Quantification of the
hybridization signals was performed using a radioimager and
the Molecular Analyst software (BioRad).

Results

nrt2 expression in H. cylindrosporum symbiotically
associated or not with the plant

In order to test the effect of host plant on the fungal nrt2
gene expression, we first developed a technique of
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Fig. 2 Effects of fructose concentrations and nitrogen sources on nrt2
gene expression in mycelia of H. cylindrosporum symbiotically
associated or not to Pinus pinaster roots. Mycelia of the D2 strain
were grown for 15 days in association or not with the plant on a
medium containing either 2.8 mM (a) or 13.9 mM (b) fructose,
without nitrogen (N=0) or supplemented with 3.78 mM of either NH4

or NO3. nrt2 expression was analyzed by northern blot hybridization
using 20 μg of total RNA extracted from ten mycelia. Membranes
were successively hybridized to the nrt2 and the 5.8S rDNA probes.
Hybridization signals for the nrt2 transcripts were normalized using
the hybridization signals produced by the 5.8S rDNA probe. This
experiment was repeated three times independently. Different letters
indicate significant differences (p<0.05) as determined by Fischer's
PLSD test
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inoculation which allowed infection of seedling tap roots
over their entire length. P. pinaster main roots were entirely
covered by a 7×2-cm H. cylindrosporum mycelial strip
from the D2 strain, on a culture medium supplemented with
fructose as this monosaccharide was shown to be the most
suitable carbon source for in vitro mycorrhizal syntheses
(Combier et al. 2004). The growing mycelium that had
emerged from the inoculum was harvested 15 days after
inoculation to study nrt2 expression. Microscopic observa-
tions of cross sections made through the tap root confirmed
fungal infection characterized by the presence of a Hartig
net surrounding rhizodermal and outer cortical cells
(Fig. 1). Intraradical fungal growth was particularly
massive on ammonium-containing medium (Fig. 1c) com-
pared to a nitrate containing one (Fig. 1b) or a medium
without N (data not shown).

Plant effect was studied 15 days after inoculation by
comparing the nrt2 expression in the extramatrical mycelium
symbiotically associated to the roots of P. pinaster seedlings
and in similar mycelia that had been transferred in control
Petri dishes without plant. The effect of a factorial
combination of two fructose concentrations (2.8 and
13.9 mM) and of three N sources (either no N, 3.78 mM
NO3 or NH4) added to the media was studied (Fig. 2). No
nrt2 expression was observed in the free-living mycelium
growing on a low fructose concentration (Fig. 2a). On the
opposite, in the extramatrical mycelium living in symbiosis

with the plant root, nrt2 expression was detected on both low
and high fructose concentrations in media with either no N
or nitrate as N source (Fig. 2a, b). This experiment was
repeated with two other fungal strains: the haploid
homokaryotic strain h1 (related to the D2 strain) and the
unrelated dikaryotic GCA6 one. nrt2 gene regulation pattern
was similar in all three strains: on low fructose concentration
nrt2 gene was not expressed in the free-living mycelium and
only showed expression when the fungus was associated to
the plant root (data not shown). On the opposite, in the
presence of high fructose concentration in the medium
(13.9 mM), we did not observe any significant effect of the
plant on nitrate transporter gene expression (Fig. 2b). In both
the free-ling mycelium and the extramatrical symbiotic
mycelium, very little nrt2 messenger RNA (mRNA) accu-
mulated in presence of ammonium while a strong accumu-
lation was observed in the absence of a N source or in
presence of nitrate.

Effect of different carbon sources concentrations
on nrt2 expression

In a second experiment, we tested the effect of a concentration
range of different carbon sources; from 1 to 15 mM of either
fructose, glucose, or an equimolar mixture of fructose+glucose
with nitrate as nitrogen source. For all the tested sugars, nrt2
mRNA accumulation was positively correlated to sugar
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Fig. 3 Effects of different
carbon sources and concentra-
tions on nrt2 (a) and nar1 (b)
gene expression. Mycelia of the
D2 strain were grown for
10 days on media containing a
range from 1 to 15 mM (final
concentrations) of either
fructose, glucose, or an
equimolar mixture of glucose
+fructose supplemented with
3.78 mM NO3. nrt2 and nar1
gene expressions were analyzed
by northern blot hybridization as
described in Fig. 2. Northern
blots were repeated three times.
Different letters indicate signifi-
cant differences (p<0.05) as
determined by Fischer's PLSD
test
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concentration (Fig. 3a). The same expression pattern was
obtained for the nar1 gene encoding the nitrate reductase
from H. cylindrosporum (Fig. 3b).

Discussion

In this study, we evaluated the impact of several factors,
host plant and carbohydrate availability, the latest being
rarely taken into consideration, in the context of regulation
of genes participating to the acquisition of soil nitrogen
resources by mycorrhizal fungi. In this respect, regulation
pattern of the nrt2 gene whose protein product is located at
the interface between the soil and the fungal cytoplasm to
allow nitrate to enter into the cytoplasm is likely to reflect
the capacity of the cell to use this nutrient. In the context of
mycorrhiza functioning, the dependency of a fungal
nitrogen assimilation pathway upon immediate monosac-
charide availability could tell us how basal fungal metab-
olism is dependent upon the plant sugar supply. Indeed, H.
cylindrosporum cannot degrade and use in pure culture
most of the major complex carbohydrates which constitute
the plant litter (cellulose, hemicellulose, pectin; unpub-
lished results) and is likely to rely on immediate plant C
supply for its survival and foraging activity in soil.

With respect to nitrogen regulation, our results are in
accordance with the results of Jargeat et al. (2000, 2003)
and Bailly et al. (2007) who demonstrated that in H.
cylindrosporum, the different genes of the nitrate assimila-
tion pathway, including nrt2 are repressed in the presence
of NH4 but do not need NO3 for induction. High expression
levels under nitrogen-deprived conditions, in the absence of
the corresponding substrate was also reported for different
N-regulated genes from other ectomycorrhizal species;
Tuber borchii for its nitrate transporter TbNrt2 (Montanini
et al. 2006) and Amanita muscaria for its amino-acid
transporter AmAAP1 (Nehls et al. 1999).

In addition to regulation by N sources of the nrt2 gene,
for the first time we identified a regulation by carbon
sources. In pure culture, a minimum sugar concentration
appears necessary for a sustained transcription of the nrt2
gene. High level of transcription in the presence of high
sugar concentration is, however, prevented by the presence
of ammonium. In yeast, gene regulation by glucose is a
well-described phenomenon (Özcan et al. 1996; Geladé et
al. 2003), whereas in filamentous fungi, gene regulation by
carbon sources has extensively been studied essentially
in the context of polysaccharide degradation (Felenbock
and Kelly 1996). Evidence for similar sugar-dependent
mechanisms of gene regulation was reported in the
ectomycorrhizal basidiomycete A. muscaria with the up-
regulation by increased hexose concentrations of AmMst1
encoding a hexose transporter (Nehls et al. 1998). However,

carbon regulation of genes otherwise regulated by N-
sources has seldom been reported with the exception of
extracellular protease encoding genes which are down-
regulated by carbon sources (Jaray and Buxton 1994; Naik
et al. 1997; Emri et al. 2006).

Down-regulation under C shortage of a gene participating
to NO3 assimilation could be anticipated, as nitrate reduction
to ammonium is a costly process in term of reductive power
needed. A tight coupling between nitrate reduction and
carbon supply is a well-described process in green plants
where down regulation of the nitrate regulation pathway
under carbon shortage (i.e., in the dark) is achieved at both
the post-translational and transcriptional levels (Lejay et al.
2003; Kang and Turano 2003; Smith et al. 2003).

Interestingly, down-regulation of nrt2 in the presence of
low carbon concentrations in the medium could be
compensated by the presence of the host plant. This could
suggest that, under our experimental conditions, a func-
tional symbiosis was established leading to the transfer of
sugar from the plant to the fungus allowing the latter to
reduce nitrate into ammonium, which is incorporated onto
carbon skeletons for the synthesis of essential amino acids.
This represents a direct demonstration of the dependency of
basal fungal metabolism upon its active host plant.
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